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Abstract

This is an old issue in computational fluid dynamics (CFD). What is the so-called
contravariant velocity or cortravariant velocity component? In the article, we review the
basics of tensor analysis and give the contravariant velocity component a rigorous expla-
nation. For a given coordin.ite system, there exist two uniquely determined sets of base
vector systems - one is the c¢variant and another is the contravariant base vector system.
The two base vector systemrs are reciprocal. The so-called contravariant velocity com-
ponent is really the contraviriant component of a velocity vector for a time-independent
coordinate systexh, or the contravariant component of a relative velocity between fluid and
coordinates, for a time-depeadent coordinate system. The contravariant velocity compo-
nents are not physical quantities of the velocity vector. Their magnitudes, dimensions, and
associated directions are controlled by their corresponding covariant base vectors. Several
9-D linear examples and 2-T mass-conservation equation are used to illustrate the details

of expressing a vector with respect to the covariant and contravariant base vector systems,
respectively.

1. Introduction

Written in generalized -urvilinear coordinates { = £(x,y),n = n(z,y) the 2-D inviscid

Navier-Stokes equations are, in a strong conservative form,
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where, p,u,v,p, € are conver tional physical properties, J is transformation Jacobian and
U=Eu+&u, V =m0+ mv (2)

Vinokur(Ref. 1) introduced the strong conservative form of Navier-Stokes equations to CFD
in 1974, and pointed out that (U, V) were the contravariant components of velocity vector.
Compared to the Navier-Stokes equations written in Cartesian coordinates (z,y), except
for the additional inclusion of the transformation J acobian J, (U, V) are the replacements

of velocities (u, v), and henc> Steger (Ref. 2) in 1977 treated (U, V) as velocities and stated

that (U,V) were

«_ _ _ the so-called cortravariant velocities along the £ and 7 coordinates.”

Since then, the term “contravariant velocities” or “contravariant velocity components” was
widely used in computationel fluid mechanics and heat transfer, in general without further
statement or explanation, (‘or instances, Refs. 3 - 5). The term “contravariant velocity
components” could be interpreted either as, like Vinokur(Refs. 1), “contravariant (velocity)
components”, (i.e. contrava lant components of velocity) which is strictly a mathematical
definition or as, like Steger ‘Ref. 2), “the components of contravariant velocity” in which
the “contravariant velocity” can be loosely defined. In this article “contravariant velocity

components” is treated as the latter and is interchangeable with “contravariant velocities”.

Following a similar definition of Ref. 2, while applied for body surface, Ref. 6 ex-

plained that

« _ _ _ the contravariant velocities are the decomposition of velocity vector into

components along the §{ coordinate line, U, and along the 7 coordinate line, V.”

There is some ambiguity in the above explanation. It had never explained the means and
procedures of “decomposition” of velocity vector into components. It only described the
" directions the components associated but had never prescribed its corresponding base vec-
tor system. One would intuitively interpret (U, V) as the decomposed physical components
of velocity vector along the lirections of coordinate lines (&, 7). In contrast to Refs. 2 and

6, Ref. 7 stated (for 3-D cace) that



“The contravariant ve ocity components U, V, W are in directions normal to constant

¢, n, ¢ surfaces, respec-ively.”

The above statement contradicts the statements from Refs. 2 and 6 about the directions
of contravariant velocity components associated with a coordinate system. As we shall
see, neither of the above two statements (from Refs. 6 and 7) is strictly correct. The
contravariant velocity components are neither the physical components of a velocity vector
nor in directions normal tc¢ constant &, 7, surfaces, respectively. The objective of this
article is to clarify what are the contravariant velocity components and to further explain
their physical implications.

To avoid coﬁfusion’ we will start with defining terms based on the algebra of vectors.
The term component of a vector will be defined. With the definition of covariant and
contravariant base vector systems for given coordinates, the general mathematical term
“contravariant component” will be discussed and its counter term “covariant component”
will also be explained. For simplicity and clarity, we will use several 2-D linear cases as
examples. Here in the 2-D examples, the (z', z%) coordinates are interchangeable with

(¢,7) coordinates.

I1. Algebra of Vectors

In an n-dimensional \ector space a set of n linearly independent vectors e, €2, — —

—. e, is called a base vector system. Any vector A in the space can be expressed as a unique

combination of the base vectors A = c;e1 + c2€2 + — — — + Cn€p, OF using the summation
convention, A = c;e;. The rectors ci1€;,c0€2, — — —,Cn€pn are component vectors of vector
A in the e1, e, — — —, and e, directions, respectively. The coefficients, ¢1,¢2, —— —, and
¢, are called components of vector A in the e, e, — — —, and e, directions, respectively,
with respect to the base (e-, ez, — — —,en).

For example, in Cartesian coordinates, a vector A = 5i + 7j implies
e =1, e;=j, =95 ca=T7.

Expressing the same vector in terms of the base vector ((i—3j)/2, j) soas A =10(i -
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3)/2 + 12§, then

€] = (i —j>/2, €9 :j, C1 = 10, Cy = 12, (3)
or in terms of the base vectcrs (2i,i+j) as A = — (2i) + 7 (i+]), then
ep =21, ep=i+], aa=-1, =T (4)

As illustrated above, the irvariant vector A can be expressed in different base vector
systems which may or may not be orthogonal and normalized. While the “component
vectors” are physical vectors the magnitude of the components of a vector not only depend
on the directions but also depend on the magnitude (and the dimension, discussed later)

of the base vector system. Obviously, without the prescription of “base vectors”, the

“components” of a vector hzve no meaning.

IIL. Chntravariant and Covariant Base Vectors

Let z* be the coordinates of a point and r be a position vector. As shown in Fig. 1,
a covariant base vector, g; = —BQ;-” is tangent to its corresponding coordinate line, z*,
and a contravariant base vector, gt = Vz, is normal to the other coordinate lines x’
(or the surface of rt = constant), j # 1. For any given coordinates z*, its contravariant

and covariant base vectors, 2¢ and g; are uniquely determined. They have the reciprocal

>

relation,

s
¢ og=5={] 1] 5)

where 6;- is the Kronecker delta. Based on the reciprocal relation, Eq. (5), we have

1

: (no summation in ).
g: | cos (g", &)

g’ =

k)

If they are orthogonal, ther | gt |= EIW and g' and g; are in the same direction. Note
that, the sketches in Fig. 1 fand Fig. 2) only give a general indication of the directions of

g' and g; and do not imply any thing about their magnitudes.
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Indeed, we have dr = g;dz’ and the differential of arc length ds is determined from

ds? = dr - dr; therefore

d82 =g gj d.Tzd.’EJ = Gij d.’Eide
Here, the entity of g;; thus defined is called the metric tensor, because of its being the
metric of the space of the coordinates. Similarly, We can define ¢/ = g - g’. Obviously,
g* is conjugate or reciprocal tensor of gij, 1.e.

9" gr; = 8

g g =g"gr g =90k =0))
The individual ¢g** and g, are the components of two fundamental tensors. Let g = |gs;|
and G = |g¥| be determin:nts of g;; and g%, then /g = 1/v/G where /g is the Jaco-
bian of coordinate transforriation from old to new and VG is the Jacobian of coordinate
transformation from new to old. Details of these relations can be found in regular “Tensor:

Analysis” books, such as Refs. 8 and 9.

IV. Contrarariant and Covariant Components of a Vector

A given vector A is an invariant, and can be expressed in contravariant and covariant

base vector systems as

A = Alg, + A’gy + A’gs — — — +478n
= A;gt + Asg® + Asg® — — —+A.g"
or, in the summation convention,

A= Alg = Ag'. (6)

Here a super-script index is used for “contravariant” and a subscript index is used for

“covariant”. According to ~he definitions in Sect. 11, Algl,AQgg, - - —,A"g,, are com-
ponent vectors of vector A in the directions of g1,&2,~ — —8n, respectively. Simi-
larly, A,gt, A2g?, — — —, A.g" are component vectors of vector A in the directions of
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gl g% — — —,g", respectivaly. As defined in the previous Section, g; and g' are two
uniquely defined base vector systems for a given coordinate system z*. (The terms covari-

ant and contravariant will be explanded below.) Hence, we define

A® as contravariant cc mponents of vector A in the directions of g;, with respect to

the covariant base vector system (g1,82,— — — Zn).

A; as covariant components of vector A in the directions of g*, with respect to the

contravariant base vector system (gl g? — — —, gn).
For simplicity, we call Al contravariant components of vector A and A; covariant com-
ponents of vector A, with taeir association with covariant and contravariant base vectors
(respectively) implicitly imylied. The reasons why A are called contravariant and A; co-
variant components of a vector are rooted in fundamentals of tensor theory (Refs. 8 and
9). The essential property 5f a “vector” (or in general a tensor) is that its components
follow the law of coordinate transformation. Setting the base vectors g; as the standard
of comparison, if in a coordinate transformation, the components are transformed by the
same matrix that described the transformation of the base vectors g; , the components are
called “covariant” and if the components are transformed by the inverse transposed matrix
of the the matrix that described the transformation of the base vectors g;, the components
are called “contravariant”. ‘The proof of that components A; are “covariant” and At are

“contravariant” is beyond tie scope of this article.)

One can show that, from Egs. (5) and (6),
A'=A-gtand A;=A g (7)
Contravariant and covariant components, At A, are related to each other
AP =g A;, and A =gi; A

To obtain “physical compon>nts” of vector A, one has to decompose the vector with respect

to the normalized base vector, so as

7

A=At =48

== . — (summation on 7).
8l g*]
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Thus the physical componer ts A" along g, direction and A, along g* direction are
A =g | At = \/;/Z'-iAi, and A; =| g* | A; = Vg% A, (no sum on i). (8)

Here, the super-script inde:: in component A and subscript index in A4; do not imply
“contravariant” and “covariant” as adopted in the article. They don’t follow the law of

coordinate transformation, hence they are not components of tensors.

Eq. (7) is useful for ealuation but commonly leads to a mis-interpretation ( as in
Ref. 7) that A* is the component of vector A in the direction of g and A; the components
of vector A in the directior of g;. This mis-interpretation stems from the common use
of a dot-product with a un't vector, so-called “projection”, to calculate the component

of a vector in the direction >f that unit vector. In projection, it implies that a vector is

decomposed into two compcnent vectors; one parallel to and another perpendicular to a,

given direction. (This is dif'erent from the physical components mentioned above, as Al
calculated in Eq. (8).) In Ec. (7), neither the contravariant base vectors nor the covariant

base vectors are normalized. so that Eq. (7) is not a process of projection.

V. 2-D Examples and Continuity Equation

Now in 2-D, let a pos.tion vector r(&, 1) with coordinate system (€, 77), then the

detailed formula, with relations to the Cartesian quantities, are

A =1i+uj=Alg + A’g = A1g’ + 4287,
g1:‘7§:§xi+‘£yj> g2:Vﬂ=Uxi+ﬂyj
Jr e or s
= -— =T = —— =
g1 3¢ 1T Yel, B2 o Tyl T Ynl
V9 = TelYn = YTy
AIZ(A'gl):ému‘i'{yvu AZZ(A'gz):nmu+77yU
A1 = (A-g)) =zeutyev, A2 = (A g2) =Tpu+yyv
Here Al is the contravariant component of A in the direction of £ and A? is the con-

travariant component of A n the direction of n, with respect to the base vector system
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(g—g, —g%). A, is the covariant component of A in the direction of V€ and A, is the covariant

component of A in the direction of V7, with respect to the base vector system (VE,Vn).

The relations of contrivariant and covariant components to physical quantities can
be illustrated in 2-D as Fig. 2. In Fig. 2, the vector A = OC is expressed by physical
component vectors OB = 1A - gl)gy = A' g1 and OD = (A -g?)gs = A® gy in the
directions tangent to corresponding coordinate lines, (g1, g2), Or component vectors OF =
(A -gi)gt = A; g! and OF = (A - g2)g® = A, g? in directions normal to the other
coordinate lines, (g!, g2), respectively. (Here, a segment with underline, such as OB, is a
vector and without underline, such as OB, is a scalar.) In Fig. 2, OBCD is a parallelogram
formed by BC || g2 and CL || g1, and OECF is a parallelogram formed by EC | g? and

CF || g'. Thus the physical components are, with respect to system (g1, &2);
OB =| g, | AY, OD =|g.| A%
and, with respect to system (g',g?),

OF :‘ gl ’Al, OF :} g2 ’Ag

It is interesting to see the di Terence of physical component from the projection of vector in
certain direction. In contrast to OB and OD as the physical components, the projections

of vector OC in directions cf covariant base vectors are

OM = (A- g1)/lg1l = Ai/lgl, ON = (A~ g2)/1g2l = Az /lgal-

Similarly, the projections of vector OC in directions of contravariant base vectors

are

0G = (A -g')/Igl| = A/|g!|, OH = (A g)/1g*| = 4%/Ig’]. (9)

We would like to illustrate the above discussions with several examples, by using the

same vector as in Sect. II, A = 5i + 7], expressed in various contravariant and covariant

base vectors.



As a first example, consider the coordinate system £ = 2z,

orthogonal but stretched, thus
r(§,n) =¢&/2i+7j

gl = gxi"i'gyj = 2i, g2 = 77mi+77yj =]
gr=1ci+yj=1/21, go=zpi+uynj =]
Therefore, the contravariant components for the vector A are

Al=A.gl=10, 42=A-g>=7

and the covariant componer.ts are

AL:A'g]_:S/Z, Ag——‘Ag227

n = y which is still

Fig. 3 shows the sketch of ttis example, with magnitude and direction. Note that the new

coordinates (£,7) are same as the (z,y) Cartesian coordinates, except £ is scaled as 2z.

While go and g? are identical with in both magnitude and direction, g and g! are in the

same direction as x-coordin ite, i, but different in magnitude, and the magnitudes of Al

and A, are scaled according'y. The shaded area in Fig. 3 (also in Figs. 4a and 5) indicates

as the value of /g, Jacobiar of transformation from old to new coordinates.

As a second example, consider the coordinate lines (£, ) defined by § = 2z, n = z+y,

SO a8

r(§,m) =&/2i+ (n-£/2)j
gt =21 g"=(i+))
g1=(1-1)/2 g2=1]
Therefore, the contravariant components for the vector A are

A =10, A?=12
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and the covariant componer ts are
A =-1, Ay =T.
These are identical as Egs. ' 3) and (4) in Sect. 1, written as
A= Alg 4+ A%gy = 10(i - j)/2+ 125

A = Agt + Agg? = —(21) + T(i+])

Fig. 4 shows detailed sketcies of the base vectors, with magnitude and direction, and
relations with (z,y). Fig. 5 shows the vector A expressed in its contravariant and covariant

base vector systems. Since t 1e magnitudes of base vectors are not normalized, the marked

number are scaled to each baise vectors accordingly.

It is interesting to not= that if vector A is decomposed into two component vectors
so that one is parallel to g! :nd another is normal to g!, then A = 5/v2 (IT};_) +7/2 %
These are the projection of vector A on to unit vectors (i—j)/v2 and (i+j)/v2 , and are

quite different from the expression in contravariant or covariant base vector system.

As a third example, let a new coordinate system be £ = (z —y)/2, n =y, and hence

r(¢,n) = (26 4+ )i+ nj. Therefore, the contravariant and covariant base vectors are
g =(i-j)/2, g° =]
g1 =2, g2=(i+])
Hence, again as Eqs. (3) and (4),
A = Aigl + 4,82 =100 —j)/2 + 12j

A=Alg  +A%gy = —(2) +7(i +]))

Fig. 6 shows the contravariant and covariant base vectors for this new coordinate system.
Note that the coordinate system in Fig. 6 is the conjugate or reciprocal of the the coor-
dinate system in Fig. 4. The contravariant base vectors in the 3rd example are covariant

base vectors in the 2nd exaraple and the covariant base vectors in the 3rd example are
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contravariant base vectors ia the 2nd example. Clearly, the vector A is an invariant and

the specification of coordine te system is essential for vector decomposition.

In fluid dynamics, the continuity equation can be written in integral and differential

forms as
0
el W =0
at/ﬂpdv—k Sp ndS ,
O o)t + 9 W (g)tgl + L oW - (g)ig> =0 (10)
ot £ 0 ’
8 1 a 1 1
—o(g)2 + =— 2 — 2V =0.
5 2(g) +8§p(g) U+ an (9)2V

Here, p is density, W = ui + v the velocity vector and the contravariant velocity com-
ponents, U = W - gl and vV = W - g? are contravariant components of velocity vector
W, in the directions of covariant base vectors g and g, respectively. Here /g is the
same as J~! in Eq. (1), the Jacobian of transformation from old to new coordinates (or
ﬁ"l = +/G = J). In a finite volume formation, /g is the volume of the grid cell and
(9)%g* and (g)7g? are surfice normal in the directions of g! and g2, respectively. The
concept of mass conservation can be interpreted accordingly. While (U, V') are computed
by the dot-product of velocity with gl and g2, respectively, it should now be clear that
they are neither physical components of velocity vector nor in directions normal to the

corresponding surfaces.

It is important to note that the contravariant velocity components, (U, V), do not
have the physical dimension of W (velocity) itself. In fact, in addition to their magnitudes,
the dimensions of contravarint and covariant components are controlled by the dimensions
of the covariant and contras ariant base vectors, respectively. In Eq. (5) the contravariant
and covariant base vectors are reciprocal not only in magnitude but also in dimension. This

can be clearly illustrated by writing the continuity equation in cylindrical coordinates as

E=1r=+/(2?+ yé), n=20= tan™ty/x

g1 =g’ =cosfi+sinf j, \Jg=r,
go = —1 (5116 1 — cosf j), g? = —1/r (sinf i — cos j)

11



U=ucosf+v sind, V=1/r(vcosd —u sinb)

%7‘0 + —a(zrrﬂ(u cost + v sinf) + 58—9,0(1) cosf — u sind) = 0.

Here, g; and g’ are identizal. Even they are same in the direction, (orthogonal to g;
), g2 and g? are different in magnitude and dimension. Obviously, in the above, the
dimension of contravariant velocity component U is different from that of contravariant

velocity component V.

VI. Time-dependent Coordinates and Different Variations

Up to this point, we have only dealt with the cases where the coordinate system
independent of time. Actually, Steger (Ref. 1) and Refs. 5 and 6 did include a general
transformation with time as, in 2-D, € = £(z, y, t), n=n(z, y, t), 7 =1t and defined

the contravariant velocity components as
U=¢& +&u+&u==E,(u—x:)+ &V —yr),
V=mn+nu+nv=n(u—2z;)+ 00 —y)
The above relations can be -ewritten as
U=W.gl—-w . gl=(W-w) g} V:V\/'-gz—w’~g2:(W—w')~g2 (11)

where w' = g—: is the coordirate velocity vector. The additional terms are the contravariant
components of the coordinzte velocity vector. Indeed, W — w' is the relative velocity
vector. Therefore, the so-called contravariant velocities are the contravariant components
of relative velocities, between the fluid and the coordinates (or locally, the grid lines).

Obviously, all the previous d.scussions still hold for the time-dependent coordinate system.

Finally, we would like to point out that not all the so-called contravariant velocities
are defined in the same forra as discussed above. For instance, in Refs. 10 and 11, they
were called as “contravariant velocities written without normalization”. Refs. 10 and 11

have never clarified what wculd be the “normalized” contravariant velocities. In Ref. 12

the contravariant velocities svere defined as

1
g
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In Ref. 13 the “physical con ravariant velocity components” (U, V) were defined as
U=W-lgilg’, V=W l|glg’ (13)

In Refs. 14 and 15 by includiag the Jacobian of transformation, the contravariant velocities

were defined as

(S

7=W-(g)ig}, V=W-(g)7g’ (14)

The three above definitions are quite different from each other. In Eq. (12), (U, V) are
the projections of velocity vector on the directions of g' and g?, respectively, and are the
same as OG and OH in Fig. 2 given by Eq. (9). They are not “components” of the velocity
vector W as pointed out previously. In Eq. (13), (U, V) are the physical components
of velocity vector along the ¢ and n directions, given by Eq. (8), and as OB and OD in
Fig. 2, respectively. The (U V) defined in Eq. (14) are not velocity components either.
In a finite-volume formulation, Eq. (14) represent the velocity dot-product with surface
normals (in the direction of the contravariant base vectors), i.e. the convective flux rate
across the corresponding cor trol surfaces. The dimensions of U and V are still controlled
by the base vectors g! and g2 respectively. This can be seen in the continuity equation,
Eq.(10). Nevertheless, the ibove three variations of (U, V) are no longer components
of a tensor, and so are neither contravariant nor covariant components of a vector. We
would rather hold to the orizinal meaning of “contravariant” and maintain the definition

of contravariant velocities as Eq. (2) or Eq. (11), without any modification.

VII. Concluding Remarks

In this paper we have reviewed the basics of tensor analysis in an attempt to clarify
some misconception regard contravariant and covariant components of a vector as used in
fluid dynamics. We have incicated that, for any given coordinate system, there are two
uniquely determined reciprocal covariant and contravariant base vector systems. The con-
travariant components are co nponents of a given vector expressed as a unique combination
of the covariant base vector sy stem and vis versa, the covariant components are components
of a vector expressed with the contravariant base vector system. A wvector is an invare-

ant. It is the components which are contravariant or covariant, associated with the given
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coordinate system. And the so-called “contravariant velocity” or “contravariant velocity
component” is really the coatravariant component of the velocity vector. As described in
Section of Algebra of Vecto s, expressing a vector with a combination of base vector 1s a
decomposition process for a specific base vector system. Hence, the contravariant velocity
components are decomposec components of velocity Vec£or along the directions of coordi-
nate lines, with respect to the covariant base vector system. However, the contravariant
(and covariant) components are not physical quantities. Their magnitudes and dimensions

are controlled by their corresponding covariant (and contravariant) base vectors.

For a time-dependent coordinate system, the so-called contravariant velocity com-
ponents are the contravariait components of the velocity vector minus the contravariant
components of the coordina e velocity vector. In o‘ther words, the contravariant velocities
can be interpreted as the contravariant components of relative velocities, between the fluid

and the coordinates (or loca ly, the grid lines). Obviously, all the discussions hold for both

time-dependent and indeper dent coordinate systems.
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Fig. 1 Sketch of Contravariant and Covariant Base Vectors, gI and g i

( indication of direction only).



Fig. 2 Relations of Physical Components and Projections to

Contravariant and Covariant Components




Fig. 3 The Contravariant and Covariant Base Vectors in the Coordinates of ¢ = 2z and
n =y, with Vector A = Zi+ T7j
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Fig. 5 A Vector A = 5i + 7j Ixpressed with respect to Contravariant and Covariant Base
Vector Systems in the Coordinates of § =2zx and n =z +y
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